Меню Закрыть

Требования к электроприводу и автоматике

Оглавление:

1.3 Требования к электроприводу и автоматике

В зависимости от характера обработки, а также материала, величины, формы, температуры заготовки приходится изменять скорость деформации. Для проведения наладочных работ необходимо перемещать рабочий орган в холостую, с малой скоростью. Всё это может быть обеспечено изменением скорости главного привода кузнечно-прессовых машин. В настоящее время в приводах таких машин применяются все существующие виды механического и электрического регулирования скорости в диапазоне до 4 : 1, включая коробки скоростей, механические вариаторы, асинхронные двигатели с переключением полюсов и бесступенчатое регулирование посредством изменения угловой скорости двигателей постоянного тока.

Основным типом электропривода для большинства кузнечно-прессовых машин является привод от асинхронных двигателей с короткозамкнутым ротором и фазным ротором, преимущественно в закрытом, обдуваемом исполнении. В настоящее время для кузнечно-прессовых машин разрабатываются и внедряются различные приводы переменного тока с плавным регулированием скорости. К ним относятся приводы от трехфазных асинхронных двигателей с частотным и импульсным управлением, т.е. с регулированием угловой скорости двигателей, изменением частоты питающего двигатель тока или изменением подводимого к двигателю напряжения.

Другим видом плавно регулируемого электропривода переменного тока для кузнечно-прессовых машин является привод с асинхронной электромагнитной муфтой скольжения в комплекте с нерегулируемым двигателем переменного тока.

1.4 Выбор тока и величин питающего напряжения

Промышленные прессы в основном питаются от трехфазного тока при условии, если в качестве электрического привода асинхронный двигатель с фазным ротором. При условии, если электропривод с двигателем постоянного тока, то в этом случае используется напряжение U= 220 В. В нашем случае используется переменное напряжение U= 380 Вс частотой 50 Гц.

Для питания электромагнитных муфт применяется система преобразования энергии с помощью полупроводниковых преобразователей напряжением 60 В.

Питание цепи управления осуществляется от трансформатора тока. В данной схеме постоянный ток используется для питания электромагнитов с помощью диодного моста.

В схеме имеется асинхронный двигатель с короткозамкнутым ротором М и два одинаковых электромагнита YA1 иYA2. В кузнечнопрессовых машинах должны применяться двигатели с повышенным скольжением.

Двигатель главного привода вращается с постоянной скоростью и имеет реверс.

Пуск двигателя осуществляется без нагрузки. В схеме пресса торможение электродвигателя осуществляется отключением его от сети.

Эксплуатация электрооборудования осуществляется в нормальном сухом помещении, однако так как электромагниты работают в тяжелых условиях (попадание смазки, эмульсии), то степень защиты их должна быть не менее IP44. Фрикционный пресс, как и любое электрооборудование, предъявляет определенные требования к качеству электроэнергии, напряжение сети должно соответствовать 95-110% от номинального.

1.5 Выбор системы электропривода и методов регулирования

Электроавтоматика прессовых машин до последнего времени развивалась главным образом на основе применения релейно-контактных схем, особенно с управлением в функции пути. Но сейчас начинают внедряться промышленные образцы машин с использованием для управления их работой электромагнитных муфт, магнитных усилителей, индуктивных, полупроводниковых и радиоактивных датчиков, замкнутых систем автоматического управления. В которых всё более широкое применение получают бесконтактные устройства дискретного действия — бесконтактные логические элементы, срок службы у которых во много раз больше, чем у релейно-контактных. Характерными особенностями управления прессовыми машинами являются следующие: 1) обеспечение заданного режима движения ползуна (или другого основного рабочего органа), обеспечивающего требуемое качество изделий и производительность машины; 2) осуществление точного взаимодействия ползуна со вспомогательными механизмами и немедленное отключение машины при нарушении указанного взаимодействия, поскольку это может привести к авариям и травматизму. Особое внимание уделяется обеспечению безопасности работы оператора. Например, в схемах управления некоторыми прессовыми машинами при пуске предусматривается обязательное нажатие двух кнопок обеими руками одновременно, с тем чтобы исключить случайное попадание рук в рабочую зону (зону удара или сдавливания). Применяются также фотоэлементы, посредством которых машина отключается, если в её рабочую зону попадают посторонние предметы или рука оператора.

12.1. Общие вопросы электропривода лифтов

12.1.1. Требования к электроприводам лифтов. Лифт представляет собой единую электромеханическую систему (рис. 12.1), динамические характеристики которой зависят как от параметров механической части, так и от структуры и параметров электрической части.

Кабина 1 и противовес (контргруз) 2 связаны подъемным канатом 3, переброшенным через канатоведущий шкив 4, который через редуктор 5 связан с валом двигателя 6, характер движения которого определяется системой управления 7. На валу двигателя установлен электромеханический тормоз 8, обеспечивающий удержание кабины на заданном уровне при отключении двигателя, а также торможение кабины в процессе ее остановки. В шахте установлены датчики 9 положения кабины, которые связаны с системой управления 7 двигателя 6 и обеспечивают определение положения кабины перед началом движения, возможность выбора направления движения в зависимости от взаимного положения этажа назначения по вызову или приказу и этажа исходного положения кабины, остановку кабины на этаже назначения. Иногда датчики положения кабины располагаются в машинном помещении на копираппарате, который механически связан с кабиной и воспроизводит в определенном масштабе перемещение кабины. Последнее позволяет упростить обслуживание лифта, так как уменьшает количество аппаратуры в шахте, увеличивает ее доступность и возможность быстрого ремонта или замены в случае выхода ее из строя.

Уравновешивающий (компенсационный) канат 10 позволяет уменьшить влияние положения кабины в шахте на момент нагрузки электродвигателя.

Кинематическая схема лифта оказывает существенное влияние на требования, предъявляемые к двигателю и системе управления электроприводом. Так, в случае полностью уравновешенной механической системы (сила тяжести кабины с грузом равна силе тяжести противовеса и уравновешивающий канат компенсирует изменение нагрузки вследствие изменения длины подъемного каната при перемещении кабины) отсутствует активный момент нагрузки на канатоведущем шкиве, а двигатель при этом должен развивать момент, обеспечивающий преодоление момента трения в механической передаче, и динамический момент, обеспечивающий разгон и торможение кабины.

Рис. 12.1. Кинематическая схема лифта

При отсутствии противовеса двигатель должен дополнительно преодолевать момент, создаваемый силой тяжести кабины с грузом, что требует увеличения мощности двигателя, его массы и габаритов. При этом, если в процессе разгона и торможения двигатель развивает одинаковый по величине момент, будут существенно различаться величины ускорения в этих режимах, а для их выравнивания требуется принятие дополнительных мер, что повышает требования к регулировочным характеристикам электропривода и усложняет систему управления.

Правда, наличие противовеса не может полностью устранить неравномерность нагрузки вследствие изменения загрузки кабины, однако абсолютная величина нагрузки существенно уменьшается.

Наличие противовеса облегчает также работу электромеханического тормоза и позволяет уменьшить его габариты и массу, так как при этом существенно уменьшается величина момента, требуемого для удержания кабины на заданном уровне при отключенном двигателе (при полностью уравновешенной системе этот момент равен нулю).

В сою очередь, выбор типа электропривода и параметров электродвигателя может повлиять на кинематическую схему лифта. Так, при использовании высокоскоростного асинхронного привода (в отечественной практике обычно используются асинхронные электродвигатели с синхронной скоростью 1000 об/мин.) неизбежно наличие редуктора в механической передаче для согласования скоростей электродвигателя и канатоведущего шкива. При выборе электропривода постоянного тока часто используются тихоходные двигатели, частота вращения которых совпадает с требуемой частотой вращения канатоведущего шкива, что исключает необходимость применения понижающего редуктора. Это упрощает механическую передачу и уменьшает потери мощности в этой передаче. Система получается достаточно бесшумной.

Однако, при сопоставлении вариантов редукторного и безредукторного приводов проектировщик должен учитывать также то обстоятельство, что тихоходный двигатель имеет значительно большие габариты и массу, увеличенный момент инерции якоря.

Оригинальное решение предложила фирма КОНЭ, которая разработала без-редукторный привод MonoSpace с тихоходным асинхронным двигателем Ecodisc, устанавливаемым непосредственно на направляющих лифта на верхнем этаже. Упрощается механическая часть привода, освобождается площадь машинного помещения и уменьшается нагрузка на его пол, а использование для питания двигателя частотного преобразователя обеспечивает хорошие регулировочные характеристики привода. Скоростные возможности этого привода соответствуют области применения быстроходных лифтов с не очень большой грузоподъемностью (грузоподъемность ограничивается нагрузочной способностью направляющих лифта).

Режим работы электропривода лифта характеризуется частыми включениями и отключениями. При этом можно выделить следующие этапы движения: а) разгон электродвигателя до установившейся скорости, б) движение с установившейся скоростью, в) уменьшение скорости при подходе к этажу назначения (непосредственно до нуля или до малой скорости дотягивания), г) торможение и остановка кабины лифта на этаже назначения с требуемой точностью.

При этом необходимо учитывать, что этап движения с установившейся скоростью может отсутствовать, если сумма путей разгона до установившейся скорости и торможения с установившейся скорости меньше расстояния между этажами отправления и назначения (при поэтажном разъезде).

Смотрите так же:  Ответственность сторон за нарушение договора купли-продажи

Одним из основных требований, предъявленных к электроприводу лифтов, является обеспечение минимального времени движения кабины от исходного этажа положения кабины до этажа назначения по вызову или приказу. Отсюда естественно вытекает стремление повышать установившуюся скорость движения лифта для повышения его производительности, однако увеличение этой скорости далеко не всегда является оправданным.

Лифты с большой скоростью движения кабины в том случае, когда последняя должна делать остановки на каждом этаже, по существу не используются по скорости, так как на перегоне между этажами введены ограничения ускорения и замедления, кабина не успевает достигнуть номинальной скорости, поскольку путь разгона до этой скорости в этом случае обычно больше половины междуэтажного расстояния.

Исходя из указанного выше, в зависимости от условий работы целесообразно использовать приводы, обеспечивающие различные установившимися скорости движения (см. главу 1).

Например, в зависимости от назначения рекомендуется применять пассажирские лифты со следующими номинальными скоростями:

• в административных зданиях и гостиницах: до 9 этажей — от 0,7 м/с до 1 м/с; от 9 до 16 этажей — от 1 до 1,4 м/с;

• в административных зданиях от 16 этажей — 2 и 4 м/с.

Рекомендуется при установке в зданиях лифтов со скоростью более 2 м/с иметь экспрессные зоны, т.е. лифты должны обслуживать не все этажи подряд, а, например, кратные 4-5. В междуэкспрессных зонах лифты должны работать с меньшими скоростями движения. При этом используются схемы управления, которые с помощью переключений скоростей могут задавать два режима работы электропривода: с высокой скоростью при экспрессных зонах и с пониженной скоростью для поэтажного разъезда.

На практике при установке в одном подъезде, например, двух лифтов часто используется простое решение, при котором система управления обеспечивает остановку одного лифта только на нечетных этажах, а другого — только на четных. Это увеличивает использование скоростных возможностей приводов, а следовательно, повышает производительность лифтов.

Помимо основной скорости движения кабины, которая во многом определяет производительность лифта, электропривод и система управления лифтом с номинальной скоростью более 0,71м/с должны обеспечивать возможность движения кабины со скоростью не более 0,4 м/с, что необходимо для контрольного обследования шахты (режим ревизии).

Одним из важнейших требований, выполнение которого в существенной мере , зависит от структуры электропривода и системы его управления, является необходимость ограничения ускорений и замедлений кабины a=dv/dt и их производных (рывков) р= da/dt= d2v/dt2.

Максимальная величина ускорения (замедления) движения кабины при нормальных режимах работы не должна превышать: для всех лифтов, кроме больничного, 2 м/с2, для больничного лифта — 1 м/с2.

Производная ускорения и замедления (рывок) правилами не регламентируется, однако необходимость его ограничения, как и ограничение ускорения, определяется необходимостью ограничения динамических нагрузок в механической передаче во время переходных процессов и задачей обеспечения требуемого комфорта для пассажиров. Ограничение величин ускорения и рывка должно обеспечивать высокую плавность переходных процессов и тем самым исключить отрицательное влияние на самочувствие пассажиров. Для скоростных лифтов максимальное значение рывка обычно составляет 3,0 — 10 м/с3.

Требование ограничения ускорений и рывков допустимыми значениями вступает в противоречие с указанным выше требованием обеспечения максимальной производительности лифта, так как из него вытекает, что длительность разгона и замедления кабины лифта не может быть меньше определенной величины, определяемой этим ограничением. Отсюда следует, что для обеспечения максимальной производительности лифта во время переходных процессов электропривод должен обеспечивать разгон и замедление кабины с максимальными допустимыми значениями ускорения и рывка.

Важным требованием к электроприводу лифта является обеспечение точной остановки кабины на заданном уровне. Для пассажирских лифтов малая точность остановки кабины снижает его производительность, поскольку увеличивается время входа и выхода пассажиров, а также уменьшается комфортабельность лифта и безопасность пользования лифтом.

В грузовых лифтах неточная остановка затрудняет, а в некоторых случаях делает невозможной разгрузку кабины.

В ряде случаев необходимость обеспечения требований точности остановки оказывает решающее влияние на выбор системы электропривода лифта.

В соответствии с правилами, точность остановки кабины на уровне этажной площадки должна удерживаться в пределах, не превышающих: для грузовых лифтов, загружаемых посредством напольного транспорта, и для больничных — ±15 мм, а для остальных лифтов — ±50 мм.

В тихоходных лифтах невелик путь торможения, поэтому и возможное изменение этого пути, вызывающее неточность остановки, мало. Поэтому в таких лифтах выполнение требований точности остановки обычно не вызывает трудностей.

С увеличением скорости лифта увеличивается и возможный разброс положений остановки кабины, что обычно требует принятия дополнительных мер для выполнения требований к точности остановки.

Естественным требованием к электроприводу лифта является также возможность его реверсирования для обеспечения подъема и опускания кабины.

Частота включений в час для пассажирских лифтов должна составлять 100-240, а для грузовых — 70-100 при продолжительности включений 15-60%.

Кроме того, правилами предусмотрен ряд дополнительных требований к электроприводу лифта, определяемые необходимостью обеспечения безопасности его эксплуатации.

Напряжение силовых электрических цепей в машинных помещениях должно быть не выше 660 В, что исключает возможность применения двигателей с большим номинальным напряжением.

Снятие механического тормоза должно быть возможно только после создания (электрического момента, достаточного для нормального разгона электродвигателя. ‘В асинхронных электроприводах, применяемых обычно на тихоходных и быстроходных лифтах, выполнение этого требования обычно обеспечивается тем, что напряжение питания подается на электродвигатели одновременно с подачей напряжения на электромагнит тормоза. В электроприводах постоянного тока, применяющихся на скоростных лифтах, перед снятием тормоза на схему управления обычно подают сигнал задания момента и тока двигателя, достаточного для удержания кабины на уровне площадки без тормоза (задание начального тока).

Остановка кабины должна сопровождаться наложением механического тормоза. Отключение электродвигателя при остановке кабины должно происходить после j наложения тормоза.

В случае неисправности механического тормоза при нахождении кабины на уровне этажной площадки электродвигатель и питающий его преобразователь должны оставаться включенными и обеспечивать удержание кабины на уровне площадки.

Включение предохранителей, выключателей или других различных устройств в цепь якоря между двигателем и питающим его преобразователем не допускается.

. В случае перегрузки электродвигателя, а также при коротком замыкании в силовой цепи или в цепях управления электроприводом, должно быть обеспечено снятие напряжения с приводного электродвигателя лифта и наложение механического тормоза.

ТРЕБОВАНИЯ К ЭЛЕКТРОПРИВОДУ И АВТОМАТИКИ РАДИАЛЬНО — СВЕРЛИЛЬНОГО СТАНКА МОДЕЛИ 2А55

Существует определённый свод правил, который четко определяет требования к электроприводам и требования к автоматики всех станков. К электроприводам станков можно отнести следующее: Приводы подач, приводы подачи охлаждающей эмульсии и подачи смазочных материалов, привод шпинделя, перемещения столов и траверсы и т.д. К элементам автоматики станков можно отнести следующее: реле времени, конечные выключатели, путевые выключатели, переключатели, микропереключатели, приборы активного контроля и другие.

К электроприводам сверлильных станков предъявляются следующие требования:

  • 1) Если на станке производится нарезание резьбы, то привод шпинделя должен быть реверсивным;
  • 2) Схема управления должна ограничивать перемещения траверсы;
  • 3) Должна быть предусмотрена блокировка, не допускающая включение двигателя перемещения траверсы, когда она зажата;
  • 4) Не допускается работа станка с не зажатой колонной.

Диапазон регулирования скорости главного движения составляет: ( 100 — 120 ) : 1.

Главный привод сверлильных станков осуществляется от асинхронных короткозамкнутых двигателей ( АД с КЗ ротором ).

Регулирование частоты вращения шпинделя производится переключением шестерён коробки передач.

Для уменьшения числа промежуточных передач в отдельных случаях возможно применять многоскоростные асинхронные двигатели.

Для привода перемещения рукава ( траверсы ) и зажима колонны применяют отдельные асинхронные электродвигатели.

Привод подачи сверлильных станков обычно выполняется от главного двигателя. Для этого коробка передач располагается на шпиндельной бабке ( сверлильная головка ). Общий диапазон регулирования скорости подачи для вертикально — сверлильных станков ( 2 — 24 ) : 1, для радиально — сверлильных станков ( 3 — 40 ) : 1.

Требования к автоматике радиально — сверлильного станка модели 2А55:

Элементами автоматики в схеме радиально — сверлильного станка модели 2А55 являются следующие элементы:

  • 1) Конечные выключатели и переключатели;
  • 2) Переключатели автоматического зажима и отжима.

Конечные выключатели (SQ1, SQ2, SQ3, SQ4) служат для ограничения перемещения траверсы в крайние нижние и верхние положения.

В схеме станка предусмотрены два переключателя автоматического зажима. Они предназначены для обеспечивания реверса двигателя, на подъём и опускания траверсы, зажима гайки в карман, после перемещения траверсы.

Требования к электроприводу;

В простейшем понимании электропривод представляет собой электромеханическую систему, предназначенную для преобразования электрической энергии в механическую, приводящую в движение рабочие органы различных машин. Однако на современном этапе на электропривод часто возлагается задача управления движением рабочих органов по заданному закону, с заданной скоростью или по заданной траектории, поэтому более точно можно сказать, что электропривод – это электромеханическое устройство, предназначенное для приведения в движение рабочих органов различных машин и управления этим движением.

Как правило, электропривод состоит из электродвигателя, осуществляющего непосредственное преобразование электрической энергии в механическую, механической части, передающей энергию от двигателя к рабочему органу, включающий рабочий орган и устройства управления двигателем, осуществляющего регулирование потока энергии от первичного источника к двигателю. В качестве устройства управления может быть использован как простейший выключатель или контактор, так и регулируемый преобразователь напряжения. В совокупности перечисленные устройства образуют энергетический канал привода. Для обеспечения заданных параметров движения привода предназначен информационно-управляющий канал, в состав которого входят информационные и управляющие устройства, обеспечивающие получение информации о заданных параметрах движения и выходных координатах и реализующие определенные алгоритмы управления. К ним относятся, в частности, различные датчики (угла, скорости, тока, напряжения и др.), цифровые, импульсные и аналоговые регуляторы.

Смотрите так же:  Основы страховой деятельности учебное пособие грищенко

Как к любому техническому объекту, к электроприводу предъявляются разнообразные технические требования. Рассмотрим общие, наиболее характерные из них.

Требования по надежности, в соответствии с которыми электропривод должен выполнять заданные функции в определенных условиях, в течение определенного промежутка времени и с заданной вероятностью безотказной работы. Если эти требования не выполняются или не подтверждаются, то все остальные его качества могут оказаться бесполезными. Требования по надежности могут существенно отличаться в зависимости от назначения привода. Например, от электропривода рулевой машины боевой ракеты не требуется большого ресурса работы, однако вероятность отказа в течение этого небольшого промежутка времени должна быть очень низкой. Наоборот, время работы электропривода компрессора бытового холодильника должно быть достаточно продолжительным, а его отказ не связан с катастрофическими последствиями, и требования по вероятности безотказной работы не такие жесткие.

Точность или отличие каких-либо показателей движения от заданных, которое не должно превышать некоторых допустимых значений. Электропривод должен поддерживать на заданном уровне ускорение, скорость, угол или момент рабочего органа, обеспечивать перемещение рабочего органа на заданный угол и за заданное время и т.д. Например, электропривод звукозаписывающего или воспроизводящего устройства высокого класса должен обеспечить стабильность скорости вращения не хуже десятых или даже сотых долей процента.

Быстродействие, т.е. способность электропривода достаточно быстро реагировать на различные управляющие и возмущающие воздействия. Этот показатель тесно связан с показателем точности. Например, в следящем электроприводе при быстром и частом изменении управляющих сигналов, чем выше быстродействие привода, тем меньше будет ошибка воспроизведения заданного движения.

Качество переходных процессов, под которым, как и в теории автоматического управления, понимается обеспечение определенных закономерностей их протекания. Требования к качеству чаще всего формулируются, исходя из особенностей функционирования машин или рабочих органов, в которых устанавливается электропривод. Например, в приводах манипуляторов иногда недопустимо перерегулирование, так как оно может привести к выходу из строя технологического оборудования, иногда регламентируется время переходного процесса и т.д.

Энергетическая эффективность. Поскольку любой процесс передачи и преобразования электрической энергии связан с ее потерями, важно знать, какова доля этих потерь. Особенно это важно при использовании электропривода в подвижных объектах, переносной аппаратуре или электроприводах большой мощности и длительным режимом работы. Энергетическая эффективность оценивается к.п.д. – отношением полезно истраченной энергии к ее полному расходу в данном процессе. В любом случае необходимо стремиться к максимальномук.п.д. привода.

Совместимость электропривода с аппаратурой технического комплекса, в котором он используется, с системой электроснабжения, информационной системой и, наконец, с самим рабочим органом и прибором, в котором он установлен. Особенно остро вопросы совместимости стоят для электроприводов бытовой и медицинской техники, ортопедических устройств, радиотехнических приборов и систем.

Задачами управления электроприводами являются: осуществление пуска, регулирование скорости, торможение, реверсирование рабочей машины, поддержание ее режима работы в соответствии с требованиями технологического процесса, управление положением рабочего органа машины. При этом должны быть обеспечены наибольшая производительность машины или механизма, наименьшие капитальные затраты и расход электроэнергии.

Конструкция рабочей машины, вид электропривода и система его управления связаны между собой. Поэтому выбор, проектирование и исследование системы управления электроприводом должны осуществляться с учетом конструкции рабочей машины, ее назначения, особенностей и условий работы.

Кроме основных функций системы управления электроприводами могут выполнять некоторые дополнительные функции, к которым относятся сигнализация, защита, блокировки и пр. Обычно системы управления одновременно выполняют несколько функций.

Системы управления электроприводами делят на различные группы в зависимости от главного признака, положенного в основу классификации.

По способу управления различают системы ручного, полуавтоматического (автоматизированного) и автоматического управления.

Ручным называется управление, при котором оператор непосредственно воздействует на простейшие аппараты управления. Недостатками такого управления являются необходимость расположения аппаратов вблизи электропривода, обязательное присутствие оператора, низкие точность и быстродействие системы управления. Поэтому ручное управление находит ограниченное применение.

Управление называется полуавтоматическим, если его осуществляет оператор путем воздействия на различные автоматические устройства, выполняющие отдельные операции. При этом обеспечивается высокая точность управления, возможность дистанционного управления, снижается утомляемость оператора. Однако при таком управлении ограничено быстродействие, так как оператор может затрачивать время на принятие решения о требуемом режиме управления в зависимости от изменившихся условий работы.

Управление называется автоматическим, если все операции управления осуществляются автоматическими устройствами без непосредственного участия человека. В этом случае обеспечиваются наибольшие быстродействие и точность управления системы автоматического управления по мере развития средств автоматики получают все большее распространение.

По роду выполняемых в производственном процессе основных функций системы полуавтоматического и автоматического управления электроприводами можно разделить на несколько групп.

К первой группе относятся системы, обеспечивающие автоматические пуск, остановку и реверсирование электропривода. Скорость таких приводов не регулируется, поэтому они называются нерегулируемыми. Такие системы применяются в электроприводах насосов, вентиляторов, компрессоров, конвейеров, лебедок вспомогательных механизмов и т. п.

Ко второй группе относятся системы управления, которые кроме выполнения функций, обеспечиваемых системами первой группы, позволяют регулировать скорость электроприводов. Подобного рода системы электроприводов называются регулируемыми и применяются в грузоподъемных устройствах, транспортных средствах и пр.

К третьей группе относятся системы управления, обеспечивающие кроме вышеуказанных функций возможность регулирования и поддержания определенной точности, постоянства различных параметров (скорости, ускорения, тока, мощности и т. д.) при изменяющихся производственных условиях. Такие системы автоматического управления, содержащие обычно обратные связи, называются системами автоматической стабилизации.

К четвертой группе относятся системы, которые обеспечивают слежение за сигналом управления, закон изменения которого заранее не известен. Такие системы управления электроприводами называют следящими системами. Параметрами, за которыми обычно осуществляется слежение, являются линейные перемещения, температура, количество воды или воздуха и пр.

К пятой группе относятся системы управления, обеспечивающие работу отдельных машин и механизмов или целых комплексов по заранее заданной программе, называемые программными системами.

Первые четыре группы систем управления электроприводами обычно входят как составные части в систему пятой группы. Кроме того, эти системы снабжаются программными устройствами, датчиками и другими элементами.

К шестой группе относятся системы управления, которые обеспечивают не только автоматическое управление электроприводами, включая системы первых пяти групп, но и автоматический выбор наиболее рациональных режимов работы машин. Такие системы называются системами оптимального управления или самонастраивающимися. Они обычно содержат вычислительные машины, которые анализируют ход технологического процесса и вырабатывают командные сигналы, обеспечивающие наиболее оптимальный режим работы.

Иногда классификацию систем автоматического управления осуществляют по типу применяемых аппаратов. Так, различают системы релейно-контакторные, электромашинные, магнитные, полупроводниковые. Важнейшей дополнительной функцией управления является защита электропривода.

К системам автоматического управления предъявляются следующие основные требования: обеспечение режимов работы, необходимых для осуществления технологического процесса машиной или механизмом, простота системы управления, надежность системы управления, экономичность системы управления, определяемая стоимостью аппаратуры, затратами энергии, а также надежностью, гибкость и удобство управления, удобство монтажа, эксплуатации и ремонта систем управления.

По необходимости предъявляются дополнительные требования: взрывобезопасность, искробезопасность, бесшумность, стойкость к вибрации, значительным ускорениям и пр.

Техническая характеристика основных узлов радиально–сверлильного станка модели 2А55

Требования к электроприводу и автоматики радиально–сверлильного станка модели 2А55. Выбор рода тока и напряжения. Описание работы принципиальной электрической схемы станка. Расчет и выбор магнитных пускателей, светодиодов, трансформатора, выпрямителя.

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Подобные документы

Краткая техническая характеристика основных узлов радиально-сверлильного станка модели 2А55. Проектирование режимов его работы, требования к электроприводу и автоматике. Описание работы принципиальной электрической схемы, выбор электрических аппаратов.

дипломная работа [111,6 K], добавлен 02.11.2010

Конструкция базового радиально-сверлильного станка 2М554; характеристика существующего уровня технологии обработки деталей и ее модернизация. Технико-экономическое обоснование проектирования станка с ЧПУ для обработки ступицы грузового автомобиля.

дипломная работа [2,8 M], добавлен 12.11.2012

Общая характеристика радиально-сверлильного станка. Определение диапазона регулирования подач. Выбор элементов передающих крутящий момент. Расчет эффективной мощности коробки скоростей. Уточненный расчет второго вала. Разработка системы управления.

курсовая работа [1,1 M], добавлен 24.01.2015

Разработка привода главного движения радиально-сверлильного станка со ступенчатым изменением частоты вращения шпинделя. Расчет мощности привода и крутящих моментов, предварительных диаметров валов и зубчатых колес. Система смазки шпиндельного узла.

Смотрите так же:  Назначить дисциплинарное взыскание

курсовая работа [800,9 K], добавлен 07.04.2012

Техническая характеристика радиально-сверлильного станка модели 2В56. Расчет скоростей, передаточного числа, мощности и крутящих моментов. Определение геометрических параметров колёс. Расчет зубчатой передачи коробки скоростей. Определение реакций опор.

курсовая работа [1006,9 K], добавлен 11.05.2015

Исследование устройства и принципа действия фрикционного пресса. Техническая характеристика и описание основных узлов станка. Требования к электроприводу и автоматике. Выбор рода тока и величины питающего напряжения. Расчет мощности электродвигателя.

курсовая работа [2,8 M], добавлен 16.02.2016

Проектирование коробки подач вертикально-сверлильного станка. Кинематика привода коробки скоростей. Кинематическая схема и график частот вращения. Определение крутящих моментов на валах. Расчет вала, подшипников, шпоночного соединения, системы смазки.

курсовая работа [3,0 M], добавлен 01.05.2009

Расчёт конструкции коробки скоростей вертикально-сверлильного станка 2Н125. Назначение, область применения станка. Кинематический расчет привода станка. Технико-экономический анализ основных показателей спроектированного станка и его действующего аналога.

курсовая работа [3,7 M], добавлен 14.06.2011

Технические характеристики и принцип работы плоскошлифовального станка модели 3Б172. Расчет и выбор автоматического выключателя, предохранителя, теплового реле. Испытания сопротивления электродвигателя. Эксплуатация контакторов и магнитных пускателей.

курсовая работа [808,7 K], добавлен 04.06.2015

Изучение процесса модернизации привода главного движения вертикально-сверлильного станка модели 2А135 для обработки материалов. Расчет зубчатых передач и подшипников качения. Кинематический расчет привода главного движения. Выбор электродвигателя станка.

курсовая работа [888,2 K], добавлен 14.11.2011

контрольная работа Радиально-сверлильный станок

Краткая техническая характеристика механизма: компоновочная схема станка, основные технические данные и характеристики. Описание режимов и циклов работы. Требования к электроприводу, автоматике. Выбор рода тока и питающих напряжений, монтаж оборудования.

Нажав на кнопку «Скачать архив», вы скачаете нужный вам файл совершенно бесплатно.
Перед скачиванием данного файла вспомните о тех хороших рефератах, контрольных, курсовых, дипломных работах, статьях и других документах, которые лежат невостребованными в вашем компьютере. Это ваш труд, он должен участвовать в развитии общества и приносить пользу людям. Найдите эти работы и отправьте в базу знаний.
Мы и все студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будем вам очень благодарны.

Чтобы скачать архив с документом, в поле, расположенное ниже, впишите пятизначное число и нажмите кнопку «Скачать архив»

Подобные документы

Краткая техническая характеристика основных узлов радиально-сверлильного станка модели 2А55. Проектирование режимов его работы, требования к электроприводу и автоматике. Описание работы принципиальной электрической схемы, выбор электрических аппаратов.

дипломная работа [111,6 K], добавлен 02.11.2010

Исследование устройства и принципа действия фрикционного пресса. Техническая характеристика и описание основных узлов станка. Требования к электроприводу и автоматике. Выбор рода тока и величины питающего напряжения. Расчет мощности электродвигателя.

курсовая работа [2,8 M], добавлен 16.02.2016

Основное предназначение сверлильных станков, тип их механизма и технические данные. Расположение составных частей станка 2Н125. Последовательность включения приводов, режимы работы электроприводов. Разработка и описание схемы электрической соединений.

дипломная работа [1,2 M], добавлен 18.11.2016

Техническая характеристика радиально-сверлильного станка модели 2В56. Расчет скоростей, передаточного числа, мощности и крутящих моментов. Определение геометрических параметров колёс. Расчет зубчатой передачи коробки скоростей. Определение реакций опор.

курсовая работа [1006,9 K], добавлен 11.05.2015

Техническая характеристика технологической установки, классификация подъемных кранов по конструкции. Требования к электроприводу и системе управления и сигнализации, выбор величины питающих напряжений. Расчет мощности и выбор приводного электродвигателя.

курсовая работа [331,8 K], добавлен 19.03.2010

Классификация станков для обработки металлов резанием по технологическим признакам. Буквенное и цифровое обозначение моделей. Общая характеристика радиально-сверлильных станков. Назначение, устройство, принцип работы станка 2А554 и его технические данные.

контрольная работа [455,7 K], добавлен 09.11.2009

Тип станка (механизма), его основные технические данные. Циклограмма (последовательность операций), режимы работы главного привода. Выбор рода тока и напряжения и типа двигателя. Расчет механических характеристик выбранного двигателя, проверка двигателя.

курсовая работа [151,3 K], добавлен 09.12.2010

Описание конструкции и работы проектируемого рабочего механизма ткацкого станка. Техническая характеристика станка, его кинематическая схема. Необходимые технологические, кинематические и динамические расчеты дифференциального механизма, узлов и деталей.

курсовая работа [1,6 M], добавлен 07.01.2011

Назначение и область применения, технические характеристики станка. Схема и система смазки. Возможные неисправности и способы их устранения. Указание по техническому обслуживанию, эксплуатации и ремонту. Расчет категории ремонтной сложности станка.

курсовая работа [1,5 M], добавлен 18.05.2014

Режимы резания. Траектория движения инструментов. Определение комплекта инструментов. Кинематическая схема коробки скоростей. График частот вращения. Выбор двигателя. Выбор технологического оборудования. Краткая техническая характеристика станка.

контрольная работа [33,7 K], добавлен 09.10.2008

В простейшем понимании электропривод представляет собой электромеханическую систему, предназначенную для преобразования электрической энергии в механическую, приводящую в движение рабочие органы различных машин. Однако на современном этапе на электропривод часто возлагается задача управления движением рабочих органов по заданному закону, с заданной скоростью или по заданной траектории, поэтому более точно можно сказать, что электропривод – это электромеханическое устройство, предназначенное для приведения в движение рабочих органов различных машин и управления этим движением.

Как правило, электропривод состоит из электродвигателя, осуществляющего непосредственное преобразование электрической энергии в механическую, механической части, передающей энергию от двигателя к рабочему органу, включающий рабочий орган и устройства управления двигателем, осуществляющего регулирование потока энергии от первичного источника к двигателю. В качестве устройства управления может быть использован как простейший выключатель или контактор, так и регулируемый преобразователь напряжения. В совокупности перечисленные устройства образуют энергетический канал привода. Для обеспечения заданных параметров движения привода предназначен информационно-управляющий канал, в состав которого входят информационные и управляющие устройства, обеспечивающие получение информации о заданных параметрах движения и выходных координатах и реализующие определенные алгоритмы управления. К ним относятся, в частности, различные датчики (угла, скорости, тока, напряжения и др.), цифровые, импульсные и аналоговые регуляторы.

Как к любому техническому объекту, к электроприводу предъявляются разнообразные технические требования. Рассмотрим общие, наиболее характерные из них.

Требования по надежности, в соответствии с которыми электропривод должен выполнять заданные функции в определенных условиях, в течение определенного промежутка времени и с заданной вероятностью безотказной работы. Если эти требования не выполняются или не подтверждаются, то все остальные его качества могут оказаться бесполезными. Требования по надежности могут существенно отличаться в зависимости от назначения привода. Например, от электропривода рулевой машины боевой ракеты не требуется большого ресурса работы, однако вероятность отказа в течение этого небольшого промежутка времени должна быть очень низкой. Наоборот, время работы электропривода компрессора бытового холодильника должно быть достаточно продолжительным, а его отказ не связан с катастрофическими последствиями, и требования по вероятности безотказной работы не такие жесткие.

Точность или отличие каких-либо показателей движения от заданных, которое не должно превышать некоторых допустимых значений. Электропривод должен поддерживать на заданном уровне ускорение, скорость, угол или момент рабочего органа, обеспечивать перемещение рабочего органа на заданный угол и за заданное время и т.д. Например, электропривод звукозаписывающего или воспроизводящего устройства высокого класса должен обеспечить стабильность скорости вращения не хуже десятых или даже сотых долей процента.

Быстродействие, т.е. способность электропривода достаточно быстро реагировать на различные управляющие и возмущающие воздействия. Этот показатель тесно связан с показателем точности. Например, в следящем электроприводе при быстром и частом изменении управляющих сигналов, чем выше быстродействие привода, тем меньше будет ошибка воспроизведения заданного движения.

Качество переходных процессов, под которым, как и в теории автоматического управления, понимается обеспечение определенных закономерностей их протекания. Требования к качеству чаще всего формулируются, исходя из особенностей функционирования машин или рабочих органов, в которых устанавливается электропривод. Например, в приводах манипуляторов иногда недопустимо перерегулирование, так как оно может привести к выходу из строя технологического оборудования, иногда регламентируется время переходного процесса и т.д.

Энергетическая эффективность. Поскольку любой процесс передачи и преобразования электрической энергии связан с ее потерями, важно знать, какова доля этих потерь. Особенно это важно при использовании электропривода в подвижных объектах, переносной аппаратуре или электроприводах большой мощности и длительным режимом работы. Энергетическая эффективность оценивается к.п.д. – отношением полезно истраченной энергии к ее полному расходу в данном процессе. В любом случае необходимо стремиться к максимальному к.п.д. привода.

Совместимость электропривода с аппаратурой технического комплекса, в котором он используется, с системой электроснабжения, информационной системой и, наконец, с самим рабочим органом и прибором, в котором он установлен. Особенно остро вопросы совместимости стоят для электроприводов бытовой и медицинской техники, ортопедических устройств, радиотехнических приборов и систем.

В настоящем курсе мы попытаемся рассмотреть принципы построения, основные характеристики, динамические модели и структуру электроприводов, построенных на основе наиболее распространенных в настоящее время двигателей постоянного и переменного тока и выделенных в отдельный класс вентильных двигателей. Ознакомимся с методами выбора отдельных элементов привода и синтезом некоторых регуляторов с учетом перечисленных выше требований.